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ABSTRACT

The ability to construct nitrate maps in the Southern Ocean (SO) from sparse observations is important for

marine biogeochemistry research, as it offers a geographical estimate of biological productivity. The goal of

this study is to infer the skill of constructed SO nitrate maps using varying data sampling strategies. The

mapping method uses multivariate empirical orthogonal functions (MEOFs) constructed from nitrate, sa-

linity, and potential temperature (N-S-T) fields from a biogeochemical general circulation model simulation

Synthetic N-S-T datasets are created by sampling modeled N-S-T fields in specific regions, determined either

by random selection or by selecting regions over a certain threshold of nitrate temporal variances. The first

500 MEOFmodes, determined by their capability to reconstruct the original N-S-T fields, are projected onto

these synthetic N-S-T data to construct time-varying nitrate maps. Normalized root-mean-square errors

(NRMSEs) are calculated between the constructed nitrate maps and the original modeled fields for different

sampling strategies. The sampling strategy according to nitrate variances is shown to yield maps with lower

NRMSEs than mapping adopting random sampling. A k-means cluster method that considers the N-S-T

combined variances to identify key regions to insert data is most effective in reducing the mapping errors.

These findings are further quantified by a series of mapping error analyses that also address the significance of

data sampling density. The results provide a sampling framework to prioritize the deployment of bio-

geochemical Argo floats for constructing nitrate maps.

1. Introduction

Nitrate, mostly in its dissolved form NO2
3 , is an es-

sential element for supplying and sustaining marine bi-

ological productivity in the global oceans (Moore et al.

2013). The amount of nitrate serves as an important

limiting nutrient, altering the structure and function of

phytoplankton communities (Dugdale and Goering

1967; Church et al. 2000; Moore et al. 2013); and studies

have been suggested to regulate the strength of the bi-

ological pump (Elderfield 2006, chapter 6; Ducklow

et al. 2001; Ardyna et al. 2017), which is a pivotal part

of the global biogeochemical cycles (Deppeler and

Davidson 2017 Nitrate drawdown is also a good

indicator of the net community production (Arrigo

2005; Munro et al. 2015; Plant et al. 2016; Johnson et al.

2017). Johnson et al. (2017) estimated that the annually

averaged net community production in the Southern

Ocean (SO) is 1.3 PgCyr21, which accounts for about

13% of the global annual net community production.

Therefore, constructing comprehensive, accurate nitrate

maps offers geographical estimates of bioproductivity to

help understand the marine biogeochemical state and

subsequent impacts on global climate.

In the SO, the large-scale nitrate distribution is largely

determined by lateral and vertical transport processes

(Williams and Follows 2003). Letscher et al. (2016) es-

timated that 17%–20% of the total nitrate in the low-

latitude SO regions is transported by nutrient-rich water

masses from high latitudes. Verdy and Mazloff (2017)Corresponding author: Yu-Chiao Liang, yuchiaol@uci.edu

JULY 2018 L I ANG ET AL . 1505

DOI: 10.1175/JTECH-D-18-0018.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:yuchiaol@uci.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


recently made a consistent transport estimate using an

SO biogeochemical state estimate. Other studies, based

on in situ observations, found that the Antarctic Cir-

cumpolar Current can carry a great amount of nitrate

into downstream areas to cause abrupt phytoplankton

blooms (Hoppe et al. 2015). As for vertical nitrate

transport, the biological pump mechanism is capable of

exchanging nitrate between the surface and interior

ocean (Williams and Follows 2003; Elderfield 2006,

chapter 6). Because advective transport processes also

redistribute other properties (e.g., salinity and potential

temperature), there exist certain large-scale correspon-

dences between these properties and nitrate fields, such

as the nitrate–potential temperature relationship iden-

tified by Ishizu and Richards (2013). These spatial cor-

respondences shed light on the possibility to inform

SO nitrate information with the assistance of other

tracer fields.

The major challenge of constructing SO nitrate maps

is the scarcity of in situ measurements. However, the

situation is improving. The Southern Ocean Carbon and

Climate Observations and Modeling (SOCCOM) pro-

gram recently reported that 31 profiling floats carrying

nitrate sensors have successfully transmitted 40 com-

plete nitrate annual cycles (Johnson et al. 2017), and

additional float deployments are being carried out.

Multiple methods and techniques have been developed

to reconstruct fields in regions with sparse observa-

tional data, such as optimal interpolation (Reynolds

and Smith 1994; Schneider 2001), model-based gap-

filling techniques (e.g., data assimilation; Stammer et al.

2002; Wunsch and Heimbach 2007; Mazloff et al. 2010;

Verdy and Mazloff 2017), and empirical orthogonal

function (EOF)-based methods (e.g., Smith et al. 1996;

Kaplan et al. 1997; Beckers and Rixen 2003; Alvera-

Azcárate et al. 2005; Kondrashov andGhil 2006; Alvera-

Azcárate et al. 2007; Alvera-Azcárate et al. 2011;

Nikolaidis et al. 2014; Alvera-Azcárate et al. 2016). The
EOF-based methods, in particular, show advantages

over the othermethods in terms of ease of implementation

and accuracy relative to computational costs (Alvera-

Azcárate et al. 2005).

The multivariate EOF (MEOF) method, a variant of

the archetypal EOF method, has been widely used for

investigating large-scale atmospheric and oceanic

coupled variability structures because of its salient

ability to incorporate different variables with their

combined variances (Xue et al. 2000; Sparnocchia et al.

2003; Wheeler and Hendon 2004, Alvera-Azcárate
et al. 2007). The MEOF method has also been applied

to reconstruct maps with the assistance of several re-

lated fields. For example, the MEOF method has been

used to synthesize temperature–salinity information

(De Mey and Robinson 1987; Fukumori and Wunsch

1991), and reconstruct sea surface temperatures with

the assistance of chlorophyll-a and wind fields from

satellite observations (Alvera-Azcárate et al. 2007).

However, the applicability of the MEOF method

for constructing SO nitrate maps has not yet been

investigated.

Furthermore, sampling strategies determining obser-

vational requirements to construct maps target spatial

correlation structure, but they often neglect the fact

that temporal variance is extremely heterogeneous

(Dormann et al. 2007; Wang et al. 2012). The im-

plementation of the MEOF method considering both

the spatial and temporal information may allow im-

proved mapping of nitrate. The goal of this study is to

apply the MEOF method to construct SO nitrate maps

and to assess optimal data sampling strategies address-

ing both signal structure and amplitude.

In section 2 we describe the biogeochemical general

circulation model used in this study that provides

the reference nitrate–salinity–potential temperature

(N-S-T) fields for the mapping task and further analyses.

The basics of the MEOF calculations and k-means

cluster method are also introduced. Section 3 presents

the procedure and explains how we sample N-S-T data

and construct SO nitrate maps, accompanied with a se-

ries of mapping error and sampling density analyses. In

section 4 we discuss the results and caveats in the context

of prioritizing deployment of in situ measurements, such

as biogeochemical Argo floats, to best inform mapping

of SO nitrate.

2. Model and methodology

a. Biogeochemical general circulation model

The biogeochemical general circulationmodel (GCM)

used in this study to provide the reference nitrate, sa-

linity, and potential temperature (temperature herein-

after) fields is theMITgcm (Marshall et al. 1997) coupled

to the modified Biogeochemistry with Light, Iron,

Nutrients, and Gas (BLING) model (Galbraith et al.

2010). A sea ice component is also included (Losch et al.

2010). This biogeochemical GCM setup has been ap-

plied to estimate SO dynamical and biogeochemical

states (Verdy and Mazloff 2017). The model domain is

788–308S at 1/38 resolution with a Mercator projection,

and then the resolution telescopes to a coarser resolution

from 308S to the equator. The vertical z-coordinate grid

has 52 layers with varied thickness from about 4m at the

surface to 400m at depth. The bathymetry is derived

from ETOP01 (Amante and Eakins 2009). For this work

we consider an analysis domain spanning 64.88–30.48S,
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and subsample the model on a Mercator grid with 28
resolution in longitude and approximately 1:18 in lati-

tude. The sample spacing ranges from 96km at 64:88S to

190km at 30:48S.
The biogeochemical component, adapted from the

original BLING model (Galbraith et al. 2010), includes

nitrogen cycling and phytoplankton dynamics (Verdy

and Mazloff 2017). Evolutions and interactions of eight

prognostic tracers [i.e., inorganic/organic forms of

nitrogen and phosphorus, dissolved inorganic carbon

(DIC), alkalinity, oxygen, and iron] are calculated in

the model, representing important biogeochemical

processes, such as the conversion between DIC and

organic matters, phytoplankton evolution, and net

community production (Verdy andMazloff 2017; Rosso

et al. 2017).

A number of datasets are utilized to initiate and to

force the biogeochemical GCM. The atmospheric state

is obtained from ERA-Interim products (Dee et al.

2011). The initial biogeochemical tracer fields are de-

rived from the Global Ocean Data Analysis Project,

version 2 (GLODAPv2), climatology (Lauvset et al.

2016; Key et al. 2015); the World Ocean Atlas 2013 cli-

matologies (Garcia et al. 2013a,b); and a coupled model

simulation with BLING, version 2 (E. Galbraith 2013,

personal communication). The river and Antarctic

freshwater discharge are derived from continental

freshwater products of Dai and Trenberth (2002) and

Hammond and Jones (2016). The model is run for

130 years with a time step of 1 h by looping the 2005–14

forcing conditions. The N-S-T fields in the latter 60-yr

period (i.e., model years 71–130) are used in our ana-

lyses. Monthly averaged fields are output for di-

agnostics. We use only the N-S-T fields at 100-m depth,

which is approximately the average depth of nutrocline

in the SO (not shown). The simulated N-S-T fields are

used as the reference N-S-T fields in the following ana-

lyses. The N-S-T anomaly fields are calculated by sub-

tracting the monthly mean fields over the 60-yr analysis

period, thus representing the departure from the

seasonal cycle.

b. MEOF method

In this study we adopt the MEOF approach to con-

struct SO nitrate maps and consider sets of synthetic

N-S-T data in order to evaluate the method and sam-

pling strategy. Here we briefly summarize the pro-

cedures of the MEOF calculation. First, the N-S-T

anomaly fields are divided by their total (spatial and

temporal) standard deviations [sN 5 0:001 07 (molN2m22),

sS 5 0:0984 (psu), sT 5 0:405 (8C)] and transformed into

a data matrix X of the form

2
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where m represents the grid points of the reference

N-S-T fields with land points cropped; n is the total time

steps; and the superscript T denotes transpose of the

matrix. Then we perform the singular value decompo-

sition (SVD) method on X to isolate the spatial and

temporal MEOF information in U and V

UDVT 5X , (1)

where D is a diagonal matrix, in which the diagonal el-

ements (i.e.,Dii) represent the eigenvalues according to

the rank in amplitude (from largest to smallest). We

determine the MEOF mode (spatial pattern) and its

principal component (PC; time information) from the

vector components in U and V, respectively, according

to the amplitude of their corresponding eigenvalues The

percentage of variance accounted for by the ith MEOF

mode is calculated as

D2
ii/trace(DD

T)3 100%, (2)

where trace(DDT) is the sum of all diagonal elements in

DDT. As we have 720 time records, we obtain 720MEOF

modes. We examine the spatial characteristics of the

leading MEOF modes in section 3. A schematic chart to

clarify the details of the MEOF calculation is shown in

Fig. 1 (step 1).

c. k-means cluster method

The k-means cluster method is designed to partition

one or multiple datasets into k clusters in which each

datum is assigned to a certain cluster according to the

nearest mean (Hartigan and Wong 1979). Formally, its

algorithm aims tominimize the sum of squared distances

between the data and the mean within each cluster

(Forgy 1965; MacQueen 1967; Hartigan and Wong

1979), which can be formulated as

argmin
S
�
k

i51
�
x2Si

kx2m
i
k2 , (3)
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where x is the data and mi is the mean of data in cluster

Si. Because of its ease of implementation and relatively

smaller computation and storage costs compared to

other clustering methods (Hartigan and Wong 1979;

Firdaus and Uddin 2015), the k-means cluster method

has served as a prototype of unsupervised learning al-

gorithms and has been successfully applied to many

problems associated with categorization or regression

(Shirkhorshidi et al. 2014). In marine biogeochemical

studies, it has been used to explore common features or

relationships between different fields in regional and

global oceans (e.g., D’Ortenzio and Ribera d’Alcalà
2009; D’Ortenzio et al. 2012; Lacour et al. 2015; Mayot

et al. 2016; Ardyna et al. 2017). For example, Ardyna

et al. (2017) used the k-means cluster method on

satellite-derived chlorophyll-a concentration data to

define bioregions in the SO, each of which contains

unique biogeochemical phenology.

In this study we use the k-means cluster from a Python

machine learning package, called scikit-learn, v0.19.0

(Pedregosa et al. 2011, also see details on the scikit-learn

official website: http://scikit-learn.org/stable/modules/

generated/sklearn.cluster.KMeans.html). We take log

with base 10 on the N-S-T variances (see Figs. 2d–f) and

organize them into an array [i.e., x in Eq. (3)] with size

N3M, whereN is the grid size of the SO domain (4857)

and M represents the number of variables (three: ni-

trate, salinity, and temperature). The array is then

clustered with an agglomerative hierarchical clustering

model (Hartigan and Wong 1979). We set the cluster

number as five, meaning five clusters or groups are

determined based on the N-S-T variances. Themodel is

iterated until it reaches a convergence criterion of

relative tolerance less than 0.0001 [defined with regard

to the magnitude calculated in Eq. (3)], or 300 maxi-

mum iteration steps. The k-means algorithm is per-

formed 10 times, and the best result in terms of smallest

relative tolerance is selected as the final clusters. The

resulting five clusters divide the SO domain into five

subregions, which are used to determine the k-means

sampling strategy in later analyses and are discussed in

section 3.

After five SO subregions are determined by the

k-means clustermethod, we perform theKruskal–Wallis

H test (Kruskal and Wallis 1952), with a null hypothesis

that assumes the medians of each group are the same, to

inform whether these regions are significantly different

in their N-S-T mean variance fields. Significant results

are found, as all p values are far less than 0.0001, in-

dicating at least one region differs from all others in

terms of N-S-T mean variances. The mean variances for

each region are summarized in Table 1.

FIG. 1. Schematic of the MEOF mode calculation, sampling processes, and map construction used in this study.
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3. Construction of SO nitrate maps

a. MEOF analysis

We perform the MEOF analysis on the reference

N-S-T fields simulated by the biogeochemical GCM

over the 60-yr period (i.e., model years 71–130; see

section 2a for details) to construct SO nitrate maps. We

first investigate the mean and variance characteristics

of the reference N-S-T fields. Figures 2a–2c show the

N-S-T mean values in the SO. The mean nitrate field is

characterized by an evident north–south structure with

high values located south of the Subantarctic Front (the

black curve in Fig. 2) and low values to the north.

Similar geographical features can be seen in the annual

mean salinity and temperature fields but with low and

high values reversed with latitudes (Figs. 2b,c). The

spatial correspondences between mean N-S-T fields in

the SO reflect the fact that they are largely determined

by similar large-scale physical processes. It is also

noted that their meridional gradients (i.e., north–south

FIG. 2. The maps of the mean (a) nitrate, (b) salinity, and (c) potential temperature fields at 100m from the biogeochemical GCM.

(d)–(f) As in (a)–(c), but for variance in log10 scale. In each panel the black curve circling low-latitude oceans represents the Subantarctic

Front according to Orsi et al. 1995.

TABLE 1. Geographic information, N-S-T variances, and NRMSE reduction rate of each K-region.

K1 K2 K3 K4 K5 Random selection

Grid No.a 430 987 1337 1135 968 —

Area (km2) 12 264 539 27 441 742 18 734 790 15 978 503 23 490 489 —

N mean variance (molN2m23) 3:893 1026 1:533 1026 2:613 1026 1:323 1026 6:513 1027 —

S mean variance (psu) 7:213 1022 2:023 1022 3:283 1023 1:833 1023 7:023 1023 —

T mean variance (8C) 1.11 3:083 1021 1:293 1021 6:123 1021 1:053 1021 —

N NRMSE reduction rate 5.283 1024 2.193 1024 1.713 1024 8.893 1025 8.893 1025 1.823 1024

S NRMSE reduction rate 8.213 1024 2.423 1024 9.993 1025 5.693 1025 8.553 1025 1.983 1024

T NRMSE reduction rate 7.893 1024 2.233 1024 1.093 1024 6.003 1025 7.983 1025 1.993 1024

a One grid cell covers approximately 28 (longitude) 3 1.18 (latitude) ’ 27 192 km2.
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changes) are not uniform throughout the latitudes, but

they appear sharper in the 508–608S latitude band that

approximately coincides with the Subantarctic Front

(the black curve in Figs. 2a–c). Comparisons with these

modeled mean features and the N-S-T mean fields

shown in recent studies (e.g., Verdy and Mazloff 2017;

Rosso et al. 2017) indicate that the biogeochemical

GCM used in this study reasonably captures the dis-

tinctive large-scale N-S-T features in the SO.

The large-scale similarities can also be found in the

N-S-T variance maps (in log10 scale; Figs. 2d,e). Partic-

ularly high nitrate variances collocate with high salinity

and temperature variances at the confluence of the

Brazil and Malvinas Currents off the Argentine coast

and its downstream areas (Figs. 2d–f). These colloca-

tions imply parts of the highN-S-T variances are sourced

from the fluctuations and instabilities of the Sub-

antarctic Front (black curve in Figs. 2d–f), which was

also reported by a recent study (Ferrari et al. 2017).

However, mismatches of the N-S-T variance structure

appear in high latitudes, poleward of approximately

608S, where patterns of nitrate variance do not closely

resemble the patterns of salinity and temperature vari-

ances. The results imply that the ocean dynamics

explains a large portion of the N-S-T variability in the

latitudes near the Subantarctic Front, but differences

either in background gradients or as a result of bio-

geochemical processes are significant in the subpolar

regions.

We next perform the MEOF analysis over the refer-

ence N-S-T fields and obtain 720 MEOF modes (see

section 2b and Fig. 1, step 1, for details) for the nitrate

map construction. Figure 3 demonstrates the spatial

patterns of the leading five MEOF modes, which com-

bine to explain 36% of the total N-S-T combined vari-

ance. The N-S-T patterns of the first MEOF mode

capture important features and show resemblances with

each other at low latitudes (see the first column panels in

Fig. 3), particularly at the confluence of the Brazil and

Malvinas Currents, and in the downstream regions

where the positive nitrate anomalies and out-of-phase

salinity and temperature anomalies are collocated. In

contrast, the N-S-T patterns do not resemble each other

in higher latitudes. In the Bellingshausen–Amundsen

Sea regions (green boxes in the first column panels in

Fig. 3) the anomaly pattern of strong positive tempera-

ture signals differs from those of moderate negative

nitrate and salinity patterns. These latitude-dependent

FIG. 3. The first five leadingMEOFmodes. (top to bottom) Themaps are the spatial patterns of theMEOFmodes associated with (top)

nitrate, (middle) salinity, and (bottom) temperature fields. The green boxes (658–508S, 1508–808W) in the first column denote the

Bellingshausen–Amundsen Sea regions. The black curve is as in Fig. 2.
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similarities and differences seem to be the general fea-

tures of the other four MEOF modes (shown in the

second to fifth column panels in Fig. 3) and other lower-

order MEOF modes (not shown).

To evaluate the relationships between the number of

MEOF modes and the capability to reproduce the ref-

erence nitrate anomaly field, we show the snapshots of

the mapped nitrate anomalies for one randomAugust in

the biogeochemical GCM simulation from using the first

five MEOFmodes to using total 720 modes (Figs. 4a–e).

The more MEOF modes are used, the more detailed

features of nitrate anomalies are manifested. Taking the

anomalies at the Brazil–Malvinas confluence and its

downstream regions as an example, when we use only

five MEOF modes, the reproduced nitrate anomalies

show two parallel, out-of-phase anomaly bands ex-

tending from the coastal region into the South Atlantic

(Fig. 4a), whereas the meandering structures of nitrate

anomalies become evident when using more MEOF

modes (Figs. 4b–e).

The capability of capturing the details can be quanti-

fied by examining the normalized root-mean-square

errors (NRMSEs) between the mapped nitrate anomaly

field (Nmap) and the reference nitrate field (Nref). The

NRMSE for nitrate maps is defined as

NRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
t,i
(N

map
2N

ref
)2 3 cos(u

i
)

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
t,i
(N

ref
)2 3 cos(u

i
)

r , (4)

where t, i indicate the time step and the spatial grid

point, respectively; and ui is the latitude at grid i (rad).

Figure 4f shows the nitrate NRMSEs with an increasing

number of MEOF modes used in recovering the refer-

ence nitrate anomaly field (cyan line). The first five

MEOF modes result in about 0.81 NRMSE (36% vari-

ance explained), which is greatly reduced to about 0.092

(99% variance explained) using 500 modes. A similar

reduction of NRMSEs can also be found for recovering

salinity and temperature fields (green and magenta

lines, respectively, in Fig. 4f). We chose to use 500

MEOF modes for the following nitrate map construc-

tion, as this number is sufficient to reduce the N-S-T

NRMSEs to less than 0.1 and to explain more than 99%

of the total N-S-T combined variance.

FIG. 4. The constructed nitrate anomaly maps using the first (a) 5, (b) 50, (c) 100, (d) 500, and (e) 720 MEOF modes in August of

a random model year. The black curve is as in Fig. 2. (f) The NRMSEs between each constructed nitrate map and the reference nitrate

anomaly fields (cyan line). Also shown in (f) are the NRMSEs for the salinity (green line) and temperature fields (magenta line).
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b. Sampling strategies and nitrate map construction

The nitrate variance is highly heterogeneous in the SO

domain as shown in Fig. 2d. Likewise, the spatial struc-

tures of variability are not isotropic as can be seen from

the MEOF modes in Figs. 3 and 4. It follows that ob-

servations in different locations have varying levels of

information content. To investigate this hypothesis, we

create synthetic N-S-T datasets according to three

sampling strategies: 1) random selection, 2) certain

thresholds of nitrate variance (N-var strategy), and 3)

the k-means cluster method (k-means strategy). The

sampling strategies are listed in Fig. 1 (step 2) for clar-

ification.We apply theMEOFanalysis to these synthetic

data to reconstruct SO nitrate maps and to compare the

maps to the reference fields to assess these sampling

strategies (see Fig. 1, steps 3 and 4).

Figure 5 shows five SO subregions with colormarkings

determined by the k-means cluster method (see section

2c for cluster details). The K1 region in red, containing

430 grid points (;12 264 539 km2), largely coincides with

high N-S-T variance regions that cover the northern

areas of the Subantarctic Front extending from the coast

of Argentina toward the coast of South Africa and re-

gions surrounding the Australian continent. The K2

region in dark yellow, containing 987 grid points

(;27 441 742km2), covers low-latitude regions outside

the K1 area. The K3 and K4 regions in green and light

blue, respectively, containing 1337 and 1135 grid points,

respectively (;18 734 790km2 and ;15 978 503km2),

together encompass almost all low N-S-T variance re-

gions poleward of the Subantarctic Front (inside the

black curve in Fig. 5). The K5 region in blue, containing

968 grid points (;23 490 489km2), covers wide areas in

the South Pacific where relatively low N-S-T variance

regions are located. The five SO subregions from the

k-means cluster method determines the k-means strat-

egy to assess the importance of sampling locations in

map construction. The grid number, area coverage, and

mean N-S-T variances of each K region are summarized

in Table 1.

We determine the random selection strategy and

N-var strategywith certain threshold values of the nitrate

variance that give rise to the same number of grid points

as each of the K1–5 regions. For example, when com-

paring strategies to the K1 region (Fig. 6c), we randomly

select 430 grid points over the SO domain (Fig. 6a). We

also determined that there are 430 grid points with ni-

trate variance larger than 3.2436 3 1026 (molN2m22)

and used this as our threshold to determine the N-var

strategy (Fig. 6b). Thus, our three sampling strategies all

have an equal amount of synthetic N-S-T data. It is noted

that we assume the synthesized N-S-T datasets are

perfectly sampled in each grid over a 60-yr period; in

other words, no gaps in time are considered.

The random selection strategy, as expected, inserts

data with no specific spatial preferences (Fig. 6a). The

inserted data are spread throughout the region without a

specific structure. On the contrary, the 430 N-S-T data

are distributed in a structured manner using the N-var

and k-means strategies (Figs. 6b,c). The N-var sampling

strategy exhibits data grouping in the Davis Sea–

Dumont d’Urville Sea regions (red box in Fig. 6b), at the

Brazil–Malvinas confluence and its downstream region

(magenta box in Fig. 6b), and in the southeastern Indian

Ocean (black box in Fig. 6b). Similar data placements

are adopted by the k-means strategy, but the inserted

data concentrates in low-latitude regions (magenta and

black boxes in Fig. 6c) rather than in high-latitude Davis

Sea–Dumont d’Urville Sea regions (red box in Fig. 6c).

The N-S-T data are inserted in one band extending from

the Brazil–Malvinas confluence to South Africa, co-

inciding with the region north of the Subantarctic Front

in the South Atlantic sector, and in another band ex-

tending from the southeastern region of the Indian

Ocean toward the Australian west coast.

We project the 500 MEOF modes onto the synthetic

N-S-T datasets based on the three sampling strategies in

order to estimate the PCs that represent the temporal

variations of each MEOF mode (PC0 in Fig. 1, step 3).

We treat each MEOFmode equally without performing

any weighting to consider only the spatial heterogeneity

for each mode. Thus, we are assuming the primary

spatial modes of variability of the N-S-T fields are

known, and we are using the partially sampled N-S-T

anomaly fields to derive their time variability. The

FIG. 5. Color shading denotes the five subregions of the SO do-

main determined by the k-means cluster method. The number of

mapping grid points included in each subregion is denoted in the

parentheses next to the color bar. The black curve is as in Fig. 2.
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nitrate maps are then constructed by taking the dot

product of the estimated PCs and theMEOFmodes (see

Xmap in Fig. 1, step 3).

Figure 6d shows the constructed nitrate anomaly map

by random selection strategy, which captures little of the

structure of the reference nitrate anomaly field. The

NRMSEs [calculated following Eq. (4) but at each grid

point] are large (Fig. 6g), particularly in the Brazil–

Malvinas confluence and downstream regions (magenta

box), the Davis Sea–Dumont d’Urville Sea regions (red

box), and the southeastern region of the Indian Ocean

(black box). The N-var strategy, on the other hand, re-

covers some details of the reference nitrate field with

comparable magnitudes (Fig. 6e) and greatly reduces

nitrate NRMSEs (Fig. 6h) in the regions where data are

inserted. These regions are again the Brazil–Malvinas

confluence and downstream region, the Davis Sea–

Dumont d’Urville Sea regions, and the southeastern

Indian Ocean, coinciding with where large NRMSEs

appear using the random selection strategy. The

k-means strategy also shows skill in recovering the ref-

erence nitrate anomaly field (Fig. 6f), significantly re-

ducing NRMSEs (Fig. 6i) in the South Atlantic and

Indian Ocean sectors in particular, but leaves relatively

large NRMSEs in high-latitude Davis Sea–Dumont

d’Urville Sea regions where the K1 region does not

sample (red box in Fig. 6i). However, overall, the

k-means strategy has the smallest NRMSE with a value

of 0.77, while the N-var strategy gives 0.79 and the

random sampling strategy gives 0.92.

FIG. 6. The cyan dots denote the locations where the reference N-S-T fields are sampled according to (a) random selection, (b) N-var,

and (c) k-means strategies. The color shadings represent the nitrate anomaly field in August of a random model year. (d)–(f) The con-

structed nitrate maps for that August. (g)–(i) Maps showing the spatial distribution of nitrate NRMSEs. In each panel the magenta box

denotes the confluence of the Brazil and Malvinas Currents and downstream into the South Atlantic and Indian sector regions (608W–

608E and 498–388S); the red box denotes theDavis Sea–Dumont d’Urville Sea regions (808–1408E and 658–508S); the black box denotes the
southeastern region of the Indian Ocean (688–1158E and 408–308S); and the green box denotes a South Pacific region (1358–1208W and

558–308S) where no sampling data are added by the k-means and N-var strategies.
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We further investigate the capability of the k-means

and N-var strategies in reconstructing SO nitrate maps

in regions where no data are inserted. We calculate the

area-averaged NRMSEs over the region marked by the

green box in Fig. 6 and find that smaller NRMSEs use

the k-means strategy (0.086) and the N-var strategy

(0.090) than those that use the random sampling strategy

(0.095), which has 16 data samples in the region. These

findings not only show the mapping strength of the

MEOF method that uses sampling data to reconstruct

nitrate maps outside sampling areas but also reveal that

an organized sampling strategy can better recover the

reference nitrate field in regions where no data are in-

serted than random selection strategy.

To systematically evaluate the nitrate mapping errors

and their relationships with adding various amounts of

N-S-T fields, we perform a series of nitrate NRMSE

analyses (Fig. 7). We first consider adding data to re-

gions following the three sampling strategies but sam-

pling only one field and calculating the corresponding

nitrate NRMSEs (Figs. 7a,e,i). Again, the same amount

of data is sampled in each set of error calculations for the

three sampling strategies to make fair comparisons. In

Fig. 7a, adding nitrate data (cyan line) gives rise to

smaller nitrate NRMSEs than adding the other two

fields (magenta and green lines) as expected. The results

also reflect that even with no nitrate data added, the

nitrate mapping errors can be reduced by adding tem-

perature or salinity data only because of the capability of

theMEOFmethod to recover one field with information

from other fields. We also notice that the nitrate

NRMSEs are reduced linearly with an increasing num-

ber of data added, implying that the randomness in the

sampling processes can be transformed as linear map-

ping error reduction of the MEOF analyses. However,

the linear behavior of nitrate mapping errors disappears

when we adopt the N-var strategy (Fig. 7e). NRMSEs

are reduced faster at first and then asymptote as more

data are inserted. Different from the other sam-

pling strategies, the k-means strategy exhibits larger

NRMSEs, inserting only nitrate data than only salinity

or temperature data into K1 or K1–2 regions, but it re-

sults in smaller NRMSEs when adding more regions

(Fig. 7i). Such behavior of nitrate mapping errors is

possibly caused by the k-means clustermethod aiming to

capture the greatest variance overall, which does not

FIG. 7. (a) The nitrateNRMSEswith only temperature (magenta line), salinity (green line), and nitrate (cyan line) data added according

to a random selection strategy. (e),(i) As in (a), but according to the N-var and k-means strategies, respectively. (b)–(d) The nitrate

NRMSEs with fixed amounts of temperature, salinity, and nitrate added, while varied amounts of the other two fields are inserted

according to the random selection strategy. (f)–(h),(j)–(l) As in (b)–(d), but according to the N-var and k-means strategies, respectively.
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necessarily lead to the greatest constraints on the

MEOF method when one has only a single data type.

These results show that both the k-means and N-var

strategies perform better in reducing mapping errors

than random selection strategy.

Further insights can be gained by generalizing the

results in Figs. 7a, 7e, and 7i by coloring NRMSEs cal-

culated by holding the amount of a certain variable

constant and varying the other two. Figure 7j, for ex-

ample, shows the nitrate NRMSE changes with differing

amounts of nitrate (signified on the x axis) and salinity

(signified on the y axis) data inserted throughout the

K1–5 regions when a fixed amount of temperature data

(2754 data points) are inserted into the K1–3 regions.

Comparing the NRMSEs in Fig. 7 verifies that the

k-means and N-var strategies result in smaller NRMSEs

and faster error reduction rates relative to random se-

lection strategies. We also find that adding salinity and

temperature data tends to reduce nitrate mapping errors

more when using the k-means strategy than for the other

strategies (cf. Figs. 7d,h,l). This reflects that the k-means

cluster method adopts a sampling strategy that also

incorporates the salinity and temperature information

to reduce NRMSEs. The abovementioned mapping er-

ror analyses indicate that the k-means and N-var strat-

egies outperform the random selection strategy, while

the k-means strategy better utilizes the salinity and

temperature information to reduce nitrate mapping

errors.

We next examine the relative importance of inserting

all N-S-T data in regions determined by the three sam-

pling strategies into the reconstructed maps. The finding

that adding data randomly results in an approximately

linear NRMSE reduction rate (Figs. 7a–d) implies that

we can use this rate (or slope) with data added randomly

in one region as a first-order measure for its relative

importance. In other words, the faster the error re-

duction rate (or steeper slope) is in one region with data

randomly added, the more important the region is. As

such, we add N-S-T data randomly to the K1–5 regions

individually and show the corresponding nitrateNRMSEs

against the number of added data (Fig. 8a). When add-

ing 0–430 data to the K1 region, we find that the

NRMSEs drop fast from 1.0 to about 0.77 (the red solid

FIG. 8. (a) Nitrate NRMSEs against the number of data added in individual regions determined by the k-means (solid lines), N-var

(dashed lines), and random selection (black line) strategies. (b),(c) As in (a), but for salinity and temperature NRMSEs, respectively.

(d)–(f)As in (a)–(c), but data are cumulatively added over the different regions. All panels show the averageArgo float numbers deployed

in the SO for 2008–15 (solid green line), with the shading showing the standard deviation; and the number of Argo floats needed to meet

the stated goal of one float every 300 km 3 300 km (dashed green vertical lines).
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line in Fig. 8a). However, adding 430 data to the K2

region drops NRMSE to only about 0.91 (the blue solid

line in Fig. 8a). Their different slopes also reveal that in

order to obtain the same effect of reducing nitrate

NRMSE to about 0.77, approximately 987 data need to

be added to the K2 region, but only about 430 data to

the K1 region. This result clearly shows the error re-

duction rate in the K2 region is slower than in the K1

region, and it indicates the K2 region is less important

than the K1 region for constraining the mapping.

Likewise, as the error reduction rates are much slower

for the K3, K4, andK5 regions (magenta, cyan, and dark

yellow solid lines in Fig. 8a), they also play less impor-

tant roles than the K1 and K2 regions in reducing

mapping errors. The approximated NRMSE reduction

rates in each K-region for the N-S-T fields are summa-

rized in Table 1.

Although adding data to regions determined by the

N-var strategy gives rise to similar NRMSE reduction

rates as determined by the k-means strategy for nitrate

field (solid and dashed lines in Fig. 8a), discrepancies

become evident for the rates associated with salinity and

temperature fields (solid and dashed lines in Figs. 8b,c).

The k-means strategy outperforms the N-var strategy in

reducing salinity and temperature mapping errors, par-

ticularly in the high nitrate variance regions (i.e., K1–2

and Var1–2 regions). The results support those shown in

Fig. 7 and further indicates that when targeting high

nitrate variance regions, the k-means strategy not only

maintains similar performance as the N-var strategy in

reducing nitrate mapping errors but also better re-

constructs salinity and temperature maps.

To further examine whether the mapping error re-

duction rate of one K-region is affected by the data

inserted into other regions (i.e., the independence be-

tween each K-region), we add N-S-T data sequentially

to theK1–K5 regions and calculateNRMSEs (Figs. 8d–f).

That is, we randomly add data to the K1 region until 430

data fill it and then randomly add data to the K2 region

until 987 data fill it, and so on.We find themapping error

reduction rates of one region do not change when N-S-T

data have been added in other regions. For example,

the reduction rate of nitrate mapping error added in the

K2 region individually (i.e., the solid blue line in

Fig. 8a) does not change when the K1 region has first

been filled up with 430 data (i.e., the solid blue line

segment in Fig. 8d). This result confirms that the effects

of inserting data into different regions to reduce

NRMSEs are independent of each other. Such in-

dependence can also be found in the N-var sampling

strategy (dashed lines in Figs. 8d–f). However, the

NRMSEs are higher in magnitude and drop slower than

those associated with the k-means strategy, particularly

in high-variance regions. These results are consistent

with those shown in Figs. 8a–c.

The abovementioned examinations of N-S-Tmapping

error reduction rates within different regions deter-

mined by the sampling strategies quantifymapping error

reduction via adding data and informing the significance

of sampling density and distribution. The results high-

light that having greater data density in high-variance

regions (e.g., the K1 and K2 regions) is more important

than in low-variance regions for constructing nitrate

(and salinity and temperature) maps.

4. Summary and discussion

This study employs the MEOF method to construct

SO nitrate maps using N-S-T combined datasets from a

state-of-the-art biogechemical GCM. An assessment of

the MEOF method skill in estimating the reference

modeled nitrate field suggests that using the first 500

MEOF modes sufficiently recovers 99% of the model

signal. To assess an optimal way to sample N-S-T data in

the SO, we create synthetic N-S-T datasets via sampling

reference N-S-T anomaly fields in regions determined

by either random selection, a certain threshold of nitrate

variance, or a k-means cluster method. The first 500

MEOF modes are then projected onto these synthetic

N-S-T datasets to construct the SO nitrate maps. The

skill in the constructed maps is systematically examined

with a series of error analyses. The examination of

mapping error reduction rates of each region de-

termined by these sampling strategies reveals their rel-

ative importance and addresses the significance of

sampling data density within each region. The results

conclude that sampling strategies considering nitrate

variance structure yield more mapping skill than un-

structured random selection strategy. The k-means

strategy further utilizes the salinity and temperature

information to reduce the mapping errors. The MEOF

method together with the k-means sampling strategy

suggests a framework to prioritize deployment of in situ

measurements, such as biogeochemical Argo floats, to

sample important nitrate spatiotemporal variations in

the SO and to construct accurate nitrate maps.

Our findings indicate that the k-means strategy gives

rise to better N-S-T maps (Figs. 8d–f), but it does not

introduce a fundamentally different sampling strategy

from that considering solely nitrate variance. To elab-

orate this point, we perform the k-means cluster method

on a nitrate variance field only and obtain similar

grouping regions (not shown) as those determined by

the N-var strategy. This implies that the k-means strat-

egy will perform similarly as the N-var strategy if con-

sidering only the nitrate variance. Thus, our findings
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emphasize the significance of utilizing as much in-

formation as is available, which here includes the N-S-T

combined variances, when constructing maps.

One caveat to address is that this study does not

consider the resolution effects of themapping grid. If the

grid resolution doubles to approximately 183 0:58 in the

SO domain, then data redundancy between grid points

would likely become an issue and would need to be

considered for the optimal sampling strategy. It is worth

assessing decorrelation scales (Mazloff et al. 2018) and

performing sensitivity analyses of various grid mapping

resolutions. These assessments may help identify the

optimal number of inserted N-S-T data within specific

regions, revealing where increased resolution does not

further improve the mapping skill.

It is also noted that this study assumes the statistics of

the N-S-T fields are perfectly known. In our analyses

there is no mapping error induced by inaccuracies in the

MEOF modes. The degree that numerical models can

provide accurate variance and covariance information

of oceanic N-S-T fields must be assessed. Another ca-

veat is that the analyses are carried out only with N-S-T

fields at 100m. Relationships may differ at other depths,

and this must be also assessed. Finally, we note that our

calculations assume the N-S-T time series at each ob-

servation location is uninterrupted. Floats are limited by

battery life, and are affected by severe weather events,

variations of prevailing ocean currents and sea ice cover,

sensor malfunction, and interventions of signal trans-

mission (Johnson et al. 2017; Briggs et al. 2018). As-

sessing the impact of spatiotemporal heterogeneity on

observational coverage is left for future work.

This study is based on synthetic N-S-T datasets from a

biogeochemical GCM simulation. In practice, only a

limited number of in situ measurements, such as bio-

geochemical Argo floats, can be deployed in the SO

(e.g., Johnson et al. 2017). We survey Argo float data

during the 2008–15 period from the global data centers

(ftp://usgodae.org/pub/outgoing/argo; ftp://ftp.ifremer.fr/

ifremer/argo) and find that an average of 8896 112Argo

floats were deployed in the oceans south of 308S since

2005. This amount of Argo floats, denoted as solid

green vertical lines (with gray shadings) in Fig. 8, can

fill out all the K1 region and half of the K2 region,

and thus reduce nitrate NRMSE to 0.66, salinity NRMSE

to 0.52, and temperature NRMSE to 0.54. We also mark

the nominal Argo density goal of 300 km 3 300 km

resolution (i.e., coverage area per float; Johnson and

Claustre 2016) or about 1088 Argo floats deployed in

the approximately 358 3 3608 SO domain as shown by

the dashed vertical green lines in Fig. 8. If this Argo goal

is achieved, then the in situ measurement could cover

the K1 region and more than half the K2 region, and

reduce nitrate NRMSE to 0.62, salinity NRMSE to

0.46, and temperature NRMSE to 0.49. These findings

reveal the potential capability of the Argo float array

to reconstruct SO N-S-T maps adopting the k-means

strategy.

The abovementioned comparisons suggest that Argo

floats should be deployed densely where the N-S-T

combined variance is high and sparsely where the vari-

ance is low, rather than just achieving uniform 300km3
300 km spatial coverage. This study finds that targeting

high N-S-T combined variance is key to improving the

capability of the MEOF method to construct skilled

nitrate maps. However, in practice only 30% of Argo

floats (i.e., about 326 floats in the nominal float de-

ployment) are likely to be equipped with biogeo-

chemical sensors (Johnson and Claustre 2016). Such

observational limitations stress the importance of using

other biogeochemical variables, such as salinity and

temperature information, of which Fig. 7 may provide

useful insights. In addition, some studies showed global

nitrate fields can be estimated using chlorophyll-a, sea

surface temperatures, and mixed layer depth fields

(Switzer et al. 2003; Arteaga et al. 2015). Merging these

fields and other observables into the MEOF calculation

and k-means sampling strategy may also improve our

capability to construct more accurate and informative

SO nitrate maps.
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